Vertically-Oriented Graphene Electric Double Layer Capacitor Designs
نویسندگان
چکیده
منابع مشابه
Electric double-layer capacitor based on an ionic clathrate hydrate.
Herein, we suggest a new approach to an electric double-layer capacitor (EDLC) that is based on a proton-conducting ionic clathrate hydrate (ICH). The ice-like structures of clathrate hydrates, which are comprised of host water molecules and guest ions, make them suitable for applications in EDLC electrolytes, owing to their high proton conductivities and thermal stabilities. The carbon materia...
متن کاملWeak localization in electric-double-layer gated few-layer graphene
We induce surface carrier densities up to ∼ ⋅ 7 1014 cm−2 in few-layer graphene devices by electric double layer gating with a polymeric electrolyte. In 3-, 4and 5-layer graphene below 20–30 K we observe a logarithmic upturn of resistance that we attribute to weak localization in the diffusive regime. By studying this effect as a function of carrier density and with ab initio calculations we de...
متن کاملElectric double-layer capacitance between an ionic liquid and few-layer graphene
Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and graphene involves the series connection of Cg and the quantum capacitance Cq, which is p...
متن کاملDouble-layer graphene optical modulator.
Here we report a high-performance double-layer graphene optical modulator. By using two graphene layers and an oxide layer in between to form a p-oxide-n like junction, this modulator operates at 1 GHz with a high modulation depth (~0.16 dB/μm) at a moderate drive voltage (~5 V). Benefited from the symmetrical band structure of graphene near Dirac point, such design eliminates the optical loss ...
متن کاملProcess-specific mechanisms of vertically oriented graphene growth in plasmas
Applications of plasma-produced vertically oriented graphene nanosheets (VGNs) rely on their unique structure and morphology, which can be tuned by the process parameters to understand the growth mechanism. Here, we report on the effect of the key process parameters such as deposition temperature, discharge power and distance from plasma source to substrate on the catalyst-free growth of VGNs i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of The Electrochemical Society
سال: 2015
ISSN: 0013-4651,1945-7111
DOI: 10.1149/2.0121505jes